NR/RR

SET-1

III B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010 THEORY OF COMPUTATION (COMMON TO CSE, CSS, CSIT)

Time: 3hours

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- - -

- 1.a) Show that for every NFA there exists an equivalent DFA.
 - b) Design DFA to accept strings of 0^1 s and 1^1 s such that strings end with 1110. [8+8]
- 2.a) Convert the Mealy machine into equivalent moore machine as shown in the table

Present	Next State			
state	a=0		a=1	
	State	Output	State	Output
\mathbf{q}_0	q_0	0	q_1	1
$q_{_1}$	q_2	1	\mathbf{q}_0	0
q_2	q_1	2	q_2	2

b) Minimize the following finite automata and show both given and reduced are equivalent.

[8+8]

- 3. Construct NFA for the following regular expressions.
 - a) 0 + 10* + 01*0

b)
$$(0+1)*(01+110)$$

[8+8]

4.a) What is the language generated by the CFG.

 $S \rightarrow asb \mid aAb \mid aBb$

 $A \rightarrow aA \mid a$

 $B \rightarrow Bb \mid b$

b) Obtain a right linear and left – linear grammer for the following FA.

5.a) Convert the following grammer to GNF.

$$A_1 \to A_2 A_3$$

$$A_2 \to A_3 A_1 \mid b$$

$$A_3 \to A_1, A_2 \mid a$$

Prove that $L = \{a^n b^n / n \ge 1\}$ not context – free language. b)

[8+8]

Design PDA accepting L by empty stack equivalent to the following CFG. 6.a

$$S \to oBB$$
$$B \to oS / IS / o$$

Test whether $0 \mid 0^4$ is accepted by the PDA

Construct a CFG which accepts N (A) and simplify the same where b)

[8+8]

A =
$$(\{q_0,q_1\},\{a,b\},\{Z_0,Z\},\delta,q_0,Z_0,\phi)$$
 where δ is given by $\delta(\{q_0,b.Z_0\}=\{q_0,ZZ_0\}$
$$\delta(q_0,\varepsilon,Z_0)=\{q_0,\varepsilon\}$$

$$\delta(q_0,b,z)=\{q_0,\xi Z\}$$

$$\delta(q_0,b,z)=\{q_1,Z\}$$

$$\delta(q_0,a,Z)=\{q_1,Z\}$$

$$\delta(q_1,b,z)=\{q_1,\varepsilon\}$$

$$\delta(q_1,a,Z_0)=\{q_0,Z_0\}$$

Design a turing Machine for the following language. 7.a

$$L = \{ ww^R \mid W \in (a \mid b)^* \}$$

Discuss the types of tuning machines. b)

[8+8]

- Explain the Chomsky Hierarchy of languages 8.a)
 - What is post correspondence problem? Is there any solution for the following PCP b) problem? If so give the solutions if not discuss why. [8+8]

	LIST A	LIST B
i	W _i	\mathbf{X}_{i}
1	00	0
2	001	11
3	1000	011

--ooOoo—

NR/RR

SET-2

III B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010 THEORY OF COMPUTATION (COMMON TO CSE, CSS, CSIT)

Time: 3hours

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- -

- 1. Construct NFA for the following regular expressions.
 - c) 0 + 10* + 01*0

d)
$$(0+1)*(01+110)$$

[8+8]

2.a) What is the language generated by the CFG.

$$S \rightarrow asb \mid aAb \mid aBb$$

$$A \rightarrow aA \mid a$$

$$B \rightarrow Bb \mid b$$

b) Obtain a right linear and left – linear grammer for the following FA.

3.a) Convert the following grammer to GNF.

$$A_1 \rightarrow A_2 A_3$$

$$A_1 \rightarrow A_2 A_1 \mid b$$

$$A_3 \rightarrow A_1, A_2 \mid a$$

b) Prove that $L = \{a^n b^n / n \ge 1\}$ not context – free language.

[8+8]

4.a) Design PDA accepting L by empty stack equivalent to the following CFG.

$$S \rightarrow oBB$$

$$B \rightarrow oS / IS / o$$

Test whether $0 \mid 0^4$ is accepted by the PDA

b) Construct a CFG which accepts N (A) and simplify the same where

A =
$$(\{q_0, q_1\}, \{a, b\}, \{Z_0, Z\}, \delta, q_0, Z_0, \phi)$$
 where δ is given by

$$\delta(\{q_0, b.Z_0) = \{q_0, ZZ_0\}$$

$$\delta(q_0, \varepsilon, Z_0) = \{q_0, \in\}$$

$$\delta(q_0, b, z) = \{q_0, ZZ\}$$

$$\delta(q_0, a, Z) = \{q_1, Z\}$$

$$\partial(q_1,b,z) = \{q_1,\in\}$$

$$\partial(q_1, a, Z_0) = \{q_0, Z_0\}$$

5.a) Design a turing Machine for the following language.

$$L = \{ ww^R \mid W \in (a \mid b)^* \}$$

b) Discuss the types of tuning machines.

[8+8]

- 6.a) Explain the Chomsky Hierarchy of languages
 - b) What is post correspondence problem? Is there any solution for the following PCP problem? If so give the solutions if not discuss why. [8+8]

	LIST A	LIST B
i	\mathbf{W}_{i}	\mathbf{X}_{i}
1	00	0
2	001	11
3	1000	011

- 7.a) Show that for every NFA there exists an equivalent DFA.
 - b) Design DFA to accept strings of 0¹s and 1¹s such that strings end with 1110. [8+8]
- 8.a) Convert the Mealy machine into equivalent moore machine as shown in the table

Present	Next State				
state	a=0			a=1	
	State	Output	State		Output
\mathbf{q}_0	q_0	0	$q_{_1}$		1
q_1	q_2	1	\mathbf{q}_0		0
q_2	q_1	2	q_2		2

b) Minimize the following finite automata and show both given and reduced are equivalent.

[8+8]

--ooOoo--

NR/RR

SET-3

III B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010 THEORY OF COMPUTATION (COMMON TO CSE, CSS, CSIT)

Time: 3hours

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) Convert the following grammer to GNF.

$$A_1 \rightarrow A_2 A_3$$

$$A_2 \rightarrow A_3 A_1 \mid b$$

$$A_3 \rightarrow A_1, A_2 \mid a$$

b) Prove that $L = \{a^n b^n / n \ge 1\}$ not context – free language.

[8+8]

2.a) Design PDA accepting L by empty stack equivalent to the following CFG.

$$S \rightarrow oBB$$

$$B \rightarrow oS / IS / o$$

Test whether $0 \mid 0^4$ is accepted by the PDA

b) Construct a CFG which accepts N (A) and simplify the same where

[8+8]

$$\begin{split} \mathbf{A} &= (\{q_0,q_1\},\{a,b\},\{Z_0,Z\},\mathcal{S},q_0,Z_0,\phi) \text{ where } \mathcal{S} \text{ is given by } \\ \mathcal{S}(\{q_0,b.Z_0) &= \{q_0,ZZ_0\} \\ \mathcal{S}(q_0,\varepsilon,Z_0) &= \{q_0,\epsilon\} \\ \mathcal{S}(q_0,b,z) &= \{q_0,ZZ\} \\ \mathcal{S}(q_0,a,Z) &= \{q_1,Z\} \\ \mathcal{O}(q_1,b,z) &= \{q_1,\epsilon\} \\ \mathcal{O}(q_1,a,Z_0) &= \{q_0,Z_0\} \end{split}$$

3.a) Design a turing Machine for the following language.

$$L = \{ww^R \mid W \in (a \mid b)^*\}$$

b) Discuss the types of tuning machines.

- 4.a) Explain the Chomsky Hierarchy of languages
 - b) What is post correspondence problem? Is there any solution for the following PCP problem? If so give the solutions if not discuss why. [8+8]

	LIST A	LIST B
i	\mathbf{W}_{i}	\mathbf{X}_{i}
1	00	0
2	001	11
3	1000	011

- 5.a) Show that for every NFA there exists an equivalent DFA.
 - b) Design DFA to accept strings of 0^1 s and 1^1 s such that strings end with 1110. [8+8]

6.a) Convert the Mealy machine into equivalent moore machine as shown in the table

Present	Next State				
state	a=0		a=1		
	State	Output	State	Output	
\mathbf{q}_0	q_0	0	q_1	1	
$q_{_1}$	q_2	1	\mathbf{q}_0	0	
q_2	q_1	2	q_2	2	

b) Minimize the following finite automata and show both given and reduced are equivalent. [8+8]

7. Construct NFA for the following regular expressions.

e)
$$0 + 10* + 01*0$$

f)
$$(0+1)*(01+110)$$

[8+8]

8.a) What is the languag generated by the CFG.

$$S \rightarrow asb \mid aAb \mid aBb$$

$$A \rightarrow aA \mid a$$

$$B \rightarrow Bb \mid b$$

b) Obtain a right linear and left – linear grammer for the following FA. [8+8]

--ooOoo--

NR/RR

SET-4

III B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010 THEORY OF COMPUTATION (COMMON TO CSE, CSS, CSIT)

Time: 3hours

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- - -

1.a) Design a turing Machine for the following language.

$$L = \{ww^R \mid W \in (a \mid b)^*\}$$

b) Discuss the types of tuning machines.

[8+8]

- 2.a) Explain the Chomsky Hierarchy of languages
 - b) What is post correspondence problem? Is there any solution for the following PCP problem? If so give the solutions if not discuss why. [8+8]

	LIST A	LIST B
i	\mathbf{W}_{i}	X _i
1	00	0
2	001	11
3	1000	011

- 3.a) Show that for every NFA there exists an equivalent DFA.
 - b) Design DFA to accept strings of 0^1 s and 1^1 s such that strings end with 1110. [8+8]
- 4.a) Convert the Mealy machine into equivalent moore machine as shown in the table

Present		Nex	t State	
state	a=0		a=1	
	State	Output	State	Output
\mathbf{q}_0	q_0	0	q_1	1
$q_{\scriptscriptstyle 1}$	q_2	1	q_0	0
q_2	q_1	2	q_2	2

b) Minimize the following finite automata and show both given and reduced are equivalent.

5. Construct NFA for the following regular expressions.

g)
$$0 + 10* + 01*0$$

h)
$$(0+1)*(01+110)$$

[8+8]

6.a) What is the language generated by the CFG.

$$S \rightarrow asb \mid aAb \mid aBb$$

$$A \rightarrow aA \mid a$$

$$B \rightarrow Bb \mid b$$

b) Obtain a right linear and left – linear grammer for the following FA.

[8+8]

7.a) Convert the following grammer to GNF.

$$A_1 \rightarrow A_2 A_3$$

$$A_2 \rightarrow A_3 A_1 \mid b$$

$$A_3 \rightarrow A_1, A_2 \mid a$$

b) Prove that $L = \{a^n b^n / n \ge 1\}$ not context – free language.

[8+8]

8.a) Design PDA accepting L by empty stack equivalent to the following CFG.

$$S \rightarrow oBB$$

$$B \rightarrow oS / IS / o$$

Test whether $0 \mid 0^4$ is accepted by the PDA

b) Construct a CFG which accepts N (A) and simplify the same where

[8+8]

A =
$$(\{q_0, q_1\}, \{a, b\}, \{Z_0, Z\}, \delta, q_0, Z_0, \phi)$$
 where δ is given by

$$\delta(\{q_0, b.Z_0) = \{q_0, ZZ_0\}$$

$$\delta(q_0,\varepsilon,Z_0) = \{q_0,\in\}$$

$$\delta(q_0, b, z) = \{q_0, ZZ\}$$

$$\delta(q_0, a, Z) = \{q_1, Z\}$$

$$\partial(q_1, b, z) = \{q_1, \in\}$$

$$\partial(q_1, a, Z_0) = \{q_0, Z_0\}$$

--00O00--